
EE 230
 Lecture 14

Basic Feedback Configurations
Second-Order Filters
Difference Amplifiers
Impedance Converters



Quiz 10
a)

 
Determine the transfer function T(s)=VOUT

 

(s)/VIN

 

(s) for the 
circuit shown

b)
 

Is the circuit stable?
Assume the op amps are ideal and all resistors are 1Ω

 
and all 

capacitors are 1F  



And the number is ?
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Quiz 10
a)

 

Determine the transfer function T(s)=VOUT

 

(s)/VIN

 

(s) for the circuit shown
b)

 

Is the circuit stable?

Solution:

( ) OUT
2

IN

V sT s  =  = 
V s -s+1

Poles at
1+j 3s = 

2
1-j 3s = 

2

LHPRHP

Since there is one RHP pole, the circuit is unstable !



Inverting  Integrator

( ) 1T s
sRC

= −

( ) 1T jω
jωRC

= −

( ) 1T jω
ωRC

=

( ) 90T jω o∠ =

Unity gain frequency is 0
1ω

RC
=

Review from Last Time



Noninverting  Integrator

( ) ( )
0

OUT IN IN
1V V V 0

RC

t

dτ τ= +∫

Obtained from inverting integrator by preceding or following with inverter

Also widely used

Same issues affect noninverting integrator

Requires more components

Review from Last Time



First-order lowpass
 

filter with a dc gain of R2

 

/R1

( ) 2

1 2

R 1T s
R 1+sCR

⎛ ⎞
= −⎜ ⎟

⎝ ⎠( )T jω

2

1
R C

2

1

R
R

R2

 

controls the pole 
(and also the dc gain)

R1

 

controls the dc gain
(and not the pole)

Review from Last Time



OUT

IN OUT

IN

V sRC=
V 1+sRC

This is a first-order high-pass amplifier (or filter) 

But this looks like a 
useful circuit!

( )T jω

1
2

1
RC

First-Order Highpass
 

Filter

3dB band edge at ω=1/(RC)

Review from Last Time



Inverting Differentiator

( )T s sRC= −

Differentiator gain ideally goes to ∞

 

at high frequencies

Differentiator not widely used

Differentiator relentlessly amplifies noise

Stability problems with implementation (not discussed here)

Placing a resistor in series with C will result in a lossy

 

differentiator that has 
some applications

Review from Last Time



First-order High-pass Filter

( ) 2

1

RT s  = - 1R +
sC

2

1

sR C = -
1+R Cs

( )
( )2

2

1

ωR C T jω = 
1+ ωR C

( )T jω

1

1
R C

2

1

R
R

Review from Last Time



Applications of integrators to solving 
differential equations

Linear
SystemXIN XOUT

Consider the standard integral form 

1 2 3 0... ...OUT OUT OUT OUT IN IN INX b X b X b X a X X X= + + + + + + +∫ ∫∫ ∫∫∫ ∫ ∫∫

∫ ∫ ∫ ∫
INX

∫ ∫ ∫ ∫
OUTX

a0 a1 a2
a3 am

b1
b2

b3 bn

This circuit is comprised of summers and integrators
Can solve an arbitrary linear differential equation
This concept was used in Analog Computers in the past

Review from Last Time



Applications of integrators to filter design

Linear
SystemXIN XOUT ( ) 1 1 0

1 1

...
...

n n-1

n n-1
0

s s s
s s s + 

n m

n

T s α α α α
β β β

−

−

+ + +
=

+ + +

∫ ∫ ∫ ∫
INX

∫ ∫ ∫ ∫
OUTX

-β0

-βn-1
-βn-2

-βn-3

nα
n-1α

n-2α
n-3α

0α

Can design (synthesize) any T(s) with just integrators and summers !

Integrators are not used “open loop”

 

so loss is not added

Although this approach to filter design works, often more practical methods 
are used

Review from Last Time



Applications of integrators to filter design

01I
s

− 02I
s+

( )
2
0

2 2 2
0 0

I
T s

s + I s+Iα

−
=( ) 0

1 2 2
0 0

I s
T s

s + I s+Iα

−
=

( )01
OUT1 IN OUT2 OUT1

IX = - X +X +αX
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

02
OUT2 OUT1

IX = X
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

( )OUT1 01
1 2IN 01 0102

I sX =T s
X s + I s+I Iα

−
=

( )OUT2 0102
2 2IN 01 0102

I IX =T s
X s + I s+I Iα

−
=

This is a two-integrator-loop filter

These are 2-nd order filters

If I01

 

=I02

 

=I0

 

, these transfer functions reduce to



Applications of integrators to filter design

01I
s

− 02I
s+

( )
2
0

2 2 2
0 0

I
T s

s + I s+Iα

−
=

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

Consider T1

 

(jω)

( ) ( )2
0

1 2
00

jωI
T jω

I -ω +jω Iα

−
=

( )
( ) ( )22

0
1 22

00

ωI
T jω

I -ω + ω Iα
=

( )1T jω

This is the standard 2nd

 

order bandpass

 

transfer function

Now lets determine the BW and ωP

I01

 

=I02

 

=I0



Applications of integrators to filter design

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

( )
( ) ( )22

0
1 22

00

ωI
T jω

I -ω + ω Iα
=

Determine the BW and ωP ( )1T jω

( )1 PT jω

( )
2

1 PT jω

( )
01T jω

ω
d

d
=

( ) 2
01

2
T jω

ω

d

d
=

( )
( ) ( )

2

22

2 2
0

1 22
00

ω I
T jω

I -ω + ω Iα
=

( ) ( ) ( ) ( ) ( )( )
( ) ( )

2 22 22

2 2
22

2
22 2 2 2 2

0 00 0 0 01
22

00

I -ω + ω I I -ω I I -ω I
T jω

I -ω + ω I

d

d

α α

ω
α

⎛ ⎞
− +⎜ ⎟

⎝ ⎠=
⎡ ⎤
⎢ ⎥
⎣ ⎦

0=

To determine ωP

 

, must set

This will occur also when                             and the latter is easier to work with



Applications of integrators to filter design

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

Determine the BW and ωP

( ) ( ) ( ) ( ) ( )( )
( ) ( )

2 22 22

2 2
22

2
0

22 2 2 2 2
0 00 0 0 01

22
00

I -ω + ω I I -ω I I -ω I
T jω

I -ω + ω I

d

d

α α

ω
α

⎛ ⎞
− +⎜ ⎟

⎝ ⎠= =
⎡ ⎤
⎢ ⎥
⎣ ⎦

( ) ( ) ( ) ( )( )2 22 22
22 2 2 2 2

0 00 0 0 0I -ω + ω I I =ω I I -ω Iα α
⎛ ⎞

− +⎜ ⎟
⎝ ⎠

P 0ω  = I

( )
( ) ( )2

10 0
1 P 2 2

00 0

I I
T jω

I -I + I αα
= =

It suffices to set the numerator to 0

Solving, we obtain

( )
( ) ( )22

0
1 22

00

ωI
T jω

I -ω + ω Iα
=

Substituting back into the magnitude expression, we obtain

Although the analysis is somewhat tedious, the results are clean

( )1T jω

( )1 PT jω

( )
2

1 PT jω

The 2nd

 

order Bandpass

 

Filter
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( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
= ( )

( ) ( )22

0
1 22

00

ωI
T jω

I -ω + ω Iα
=

Determine the BW and ωP ( )T jω

1
α

1
2α

( ) ( ) ( ) ( )( )
( ) ( )

2 22 2

2 2
22

2
1
2

22 2 2 2 2
0 00 0 0 0

22
00

I -ω + ω I I -ω I I -ω I

I -ω + ω I

α α

α
α

⎛ ⎞
− +⎜ ⎟

⎝ ⎠=
⎡ ⎤
⎢ ⎥
⎣ ⎦

H L 0BW = ω - ω = Iα

H L 0ω ω  = I

To obtain ωL

 

and ωH

 

, must solve ( ) 1
21T jω
α

=

This becomes

The expressions for ωL

 

and ωH  can be easily obtained but are somewhat messy, but
from these expressions, we obtain the simple expressions 

The 2nd

 

order Bandpass

 

Filter



Applications of integrators to filter design

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

Determine the BW and ωP

P 0ω  = I

( ) 1
1 PT jω

α
=

( )
( ) ( )22

0
1 22

00

ωI
T jω

I -ω + ω Iα
=

( )1T jω

( )1 PT jω

( )
2

1 PT jω

The 2nd

 

order Bandpass

 

Filter

( )1T jω

1
2α

1
α

0BW = Iα



Applications of integrators to filter design

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

Determine the BW and ωP

0BW = αI
H L 0ω ω  = I

( )1T jω

1
2α

1
α

( ) 0
1 2 2

0

I s
T s

s +BWs+I

−
=

The 2nd

 

order Bandpass

 

Filter

Often express the standard 2nd

 

order bandpass

 

transfer function as



Applications of integrators to filter design

These results can be generalized

BW = a

Pω b =

( )BPT jω

K

K
2

( )BP 2
HsT s

s +as+b
=

The 2nd

 

order Bandpass

 

Filter

H
K= 

a
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( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

Determine the BW and ωP

( )1T jω

1
2α

1
α

( ) 0
1 2 2

0

I s
T s

s +BWs+I

−
=

The 2nd

 

order Bandpass

 

Filter

01I
s

− 02I
s+

Can readily be implemented with a summing inverting integrator and a 
noninverting integrator

I01

 

=I02

 

=I0



Applications of integrators to filter design

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

Determine the BW and ωP

( )1T jω

1
2α

1
α

( ) 0
1 2 2

0

I s
T s

s +BWs+I

−
=

The 2nd

 

order Bandpass

 

Filter

01I
s

− 02I
s+

•

 

Widely used 2nd

 

order Bandpass

 

Filter
•

 

BW can be adjusted with RQ
•

 

Peak gain changes with RQ
•

 

Note no loss is added to the integrators

P 0ω  = I
0BW = αI

0
1I =

RC
BW=

RC
α

∴

I01

 

=I02

 

=I0



Applications of integrators to filter design

( ) 0
BP 2 2

0 0

I s
T s

s + I s+Iα

−
=

Design Strategy

( )1T jω

1
2α

1
α

The 2nd

 

order Bandpass

 

Filter
0I
s

− 0I
s+

1.

 

Pick C  (use some practical or convenient value)

2.

 

Solve expression                   to obtain R

3.

 

Solve expression                      to obtain α

 

and thus RQ

0
1I =

RC
P 0ω  = I

P
1ω =

RC

BW=
RC
α

BW=
RC
α

∴

Assume BW and ωP

 

are specified



Applications of integrators to filter design

Exact expressions for BW and ωP are very complicated but ωP

 

≈I0

( )
2
0

2 2 2
0 0

I
T s

s + I s+Iα

−
=

The 2nd

 

order Lowpass

 

Filter

01I
s

− 02I
s+

•

 

Widely used 2nd

 

order Lowpass

 

Filter
•

 

BW can be adjusted with RQ but expression not so simple
•

 

Peak gain changes with RQ
•

 

Note no loss is added to the integrators

( )2T jω

ωP

ω

( )2 PT jω

( )
2

2 PT jω BW

0
1I =

RC

Design procedure to realize a given 2nd

 

order lowpass

 

function is straightforward

I01

 

=I02

 

=I0



Another 2nd-order Bandpass
 

Filter

( )1 1 2 2 3 OUT 2 IN 3V sC +sC +G +G  = V sC +V G

11 1 OUTV sC +V G  = 0

( )

( )

3 2

2

1 1 1 2 2 3 1 1 2

s
R CT s  = -

1 1 1s +s + +
R C R C R //R R C C
⎛ ⎞
⎜ ⎟
⎝ ⎠

( )

( )

3

2
2

1 2 3 1

s
R CT s  = -

2 1s +s +
R C R //R R C
⎛ ⎞
⎜ ⎟
⎝ ⎠

1

2BW = 
R C

( )P
1 2 3

1ω =
R R //R C

( )BPT jω

K

K
2

1

3

RK= 
2R

If the capacitors are matched and equal to C

Since this is of the general form of a 2nd

 

order BP transfer function, obtain



Another 2nd-order Bandpass
 

Filter

( )

( )

3

2
2

1 2 3 1

s
R CT s  = -

2 1s +s +
R C R //R R C
⎛ ⎞
⎜ ⎟
⎝ ⎠

1

2BW = 
R C ( )P

1 2 3

1ω =
R R //R C

( )BPT jω

K

K
2

1

3

RK= 
2R

Design Strategy

1.

 

Pick C to some practical or convenient value

2.

 

Solve expression                       to obtain R1

3.

 

Solve expression                      to obtain α

 

and thus R3

4.

 

Solve expression                                            to obtain R2

1

2BW = 
R C

Assume BW, ωP

 

, and K are specified

1

3

RK= 
2R

( )P
1 2 3

1ω =
R R //R C



Another 2nd-order Bandpass
 

Filter

( )P
1 2 3

1ω =
R R //R C

( )1 2 3 OUT IN 3 OUT
sCV sC +sC +G +G  = V sC +V G V
H

+

( ) 1
OUT

1 1 OUT
V sC+G =V sC+V G

H

( )

( )( ) ( )
1

3

2
2

1 2 3 2 3 1

s H
R C H-1T s  = -

2 1s +s +
R C R //R H-1 R //R R C

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟

⎝ ⎠

( )( )
1

1 2 3

2BW = 
R C R //R H-1

−

( )( )
1

3

1 2 3

1 H
R H-1K = 

2
R R //R H-1

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟

⎝ ⎠

For the appropriate selection of component values, this is one of the best 2nd

 

order 
bandpass

 

filters that has been published

( )BPT jω

K

K
2

Termed the “STAR”

 

biquad

 

by inventors at Bell Labs



STAR 2nd-order Bandpass
 

Filter

( )

( )( ) ( )
1

3

2
2

1 2 3 2 3 1

s H
R C H-1T s  = -

2 1s +s +
R C R //R H-1 R //R R C

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟

⎝ ⎠

Implementation:

But the filter doesn’t work !

???



STAR  2nd-order Bandpass
 

Filter

( )

( )( ) ( )
1

3

2
2

1 2 3 2 3 1

s H
R C H-1T s  = -

2 1s +s +
R C R //R H-1 R //R R C

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟

⎝ ⎠

Works fine !

Reduces to previous bandpass

 

filter at H gets large 

Note that the “H”

 

amplifier has feedback to positive terminal

Implementation:

???

If op amp ideal, OUT

IN

V = H
V

Will discuss why this happens later!



End of Lecture 14
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