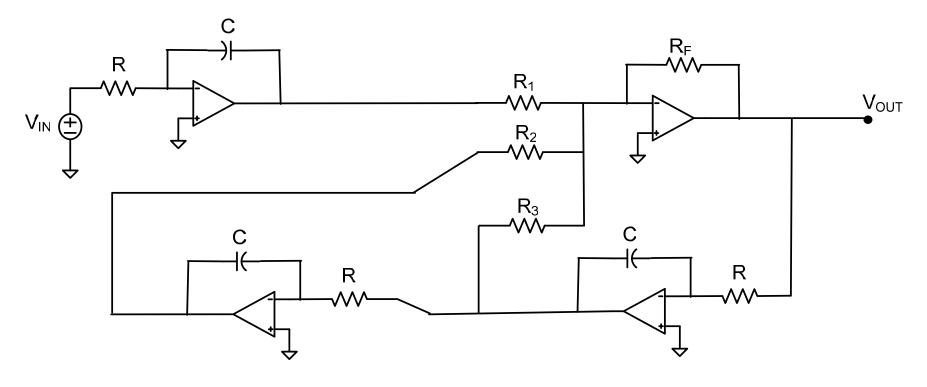
EE 230 Lecture 14

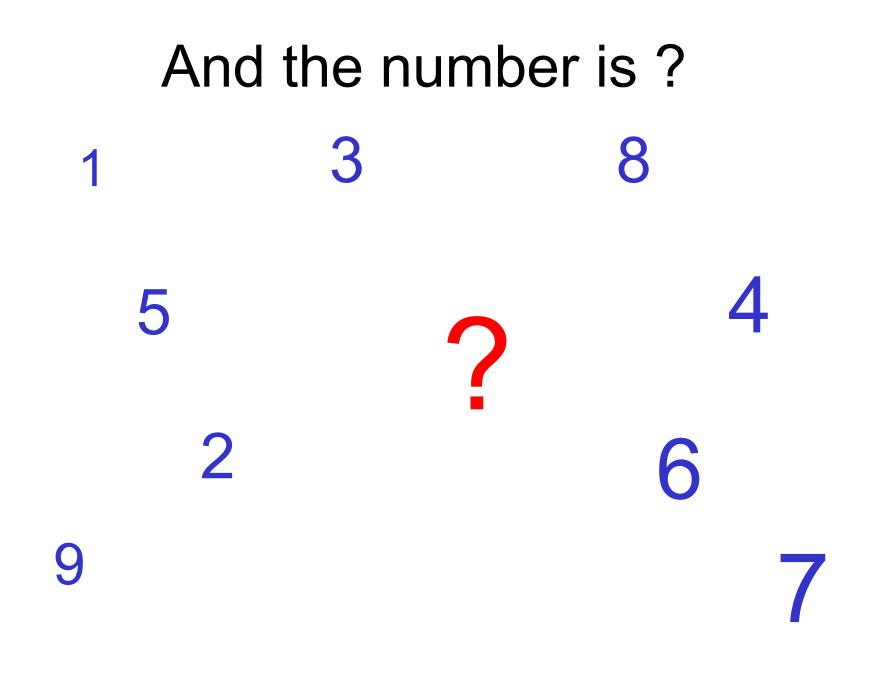
Basic Feedback Configurations Second-Order Filters Difference Amplifiers Impedance Converters

Quiz 10

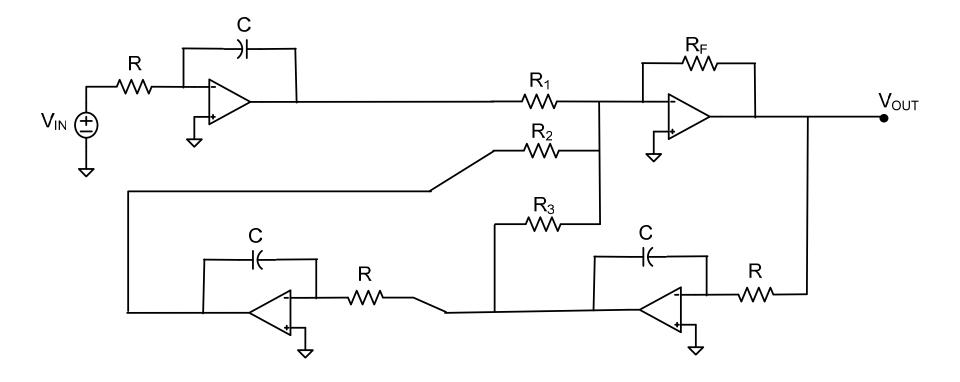
- a) Determine the transfer function T(s)=V_{OUT}(s)/V_{IN}(s) for the circuit shown
- b) Is the circuit stable?

Assume the op amps are ideal and all resistors are 1Ω and all capacitors are 1F

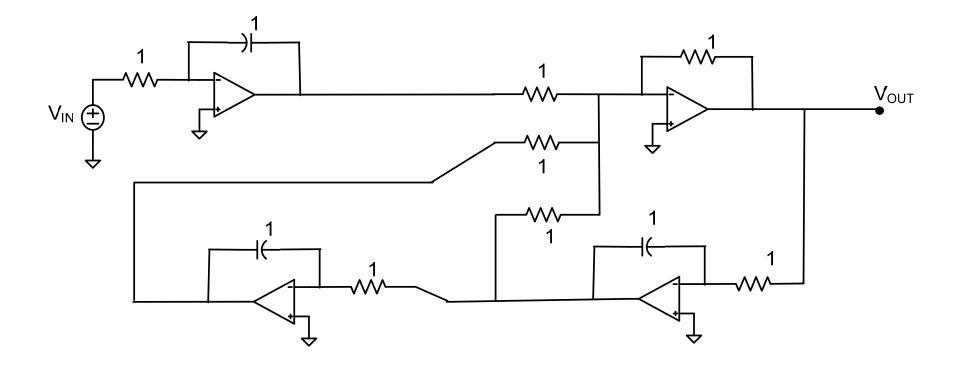




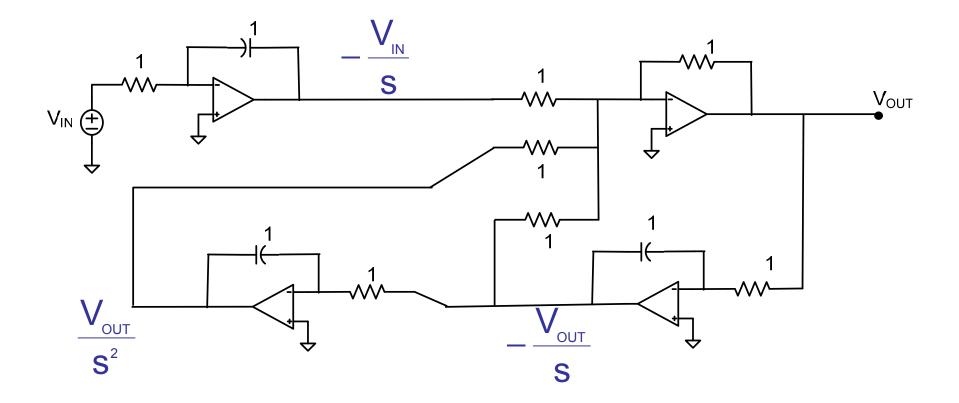
- a) Determine the transfer function $T(s)=V_{OUT}(s)/V_{IN}(s)$ for the circuit shown
- b) Is the circuit stable?



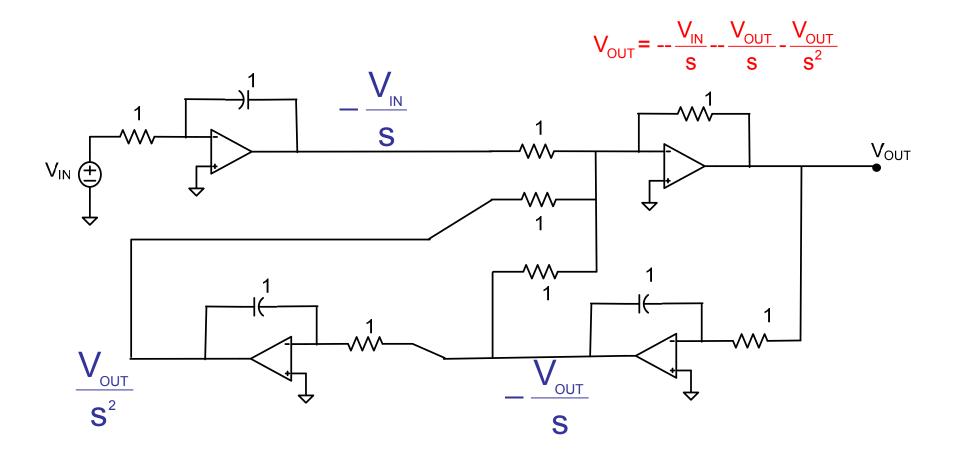
- a) Determine the transfer function $T(s)=V_{OUT}(s)/V_{IN}(s)$ for the circuit shown
- b) Is the circuit stable?



- a) Determine the transfer function $T(s)=V_{OUT}(s)/V_{IN}(s)$ for the circuit shown
- b) Is the circuit stable?



- a) Determine the transfer function $T(s)=V_{OUT}(s)/V_{IN}(s)$ for the circuit shown
- b) Is the circuit stable?



- a) Determine the transfer function $T(s)=V_{OUT}(s)/V_{IN}(s)$ for the circuit shown
- b) Is the circuit stable?

$$V_{OUT} = -\frac{V_{IN}}{s} - \frac{V_{OUT}}{s} - \frac{V_{OUT}}{s^2}$$

$$s^2 V_{OUT} - s V_{OUT} + V_{OUT} = s V_{IN}$$

$$V_{OUT}(s^2-s+1) = sV_{IN}$$

$$T(s) = \frac{V_{OUT}}{V_{IN}} = \frac{s}{s^2 - s + 1}$$

- a) Determine the transfer function $T(s)=V_{OUT}(s)/V_{IN}(s)$ for the circuit shown
- b) Is the circuit stable?

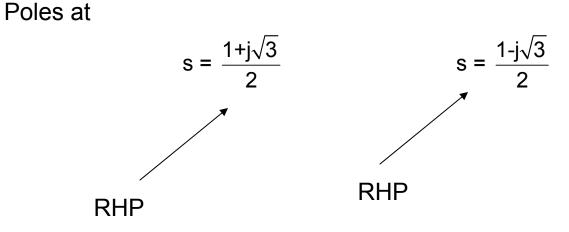
$$T(s) = \frac{V_{OUT}}{V_{IN}} = \frac{s}{s^2 - s + 1}$$

Poles at

$$s = \frac{1+j\sqrt{3}}{2} \qquad \qquad s = \frac{1-j\sqrt{3}}{2}$$

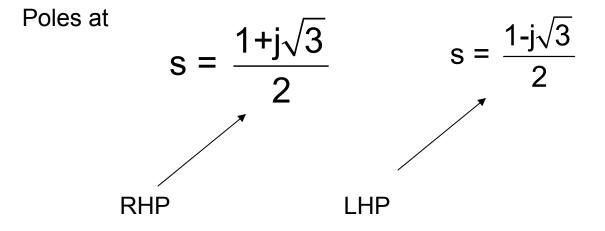
- a) Determine the transfer function $T(s)=V_{OUT}(s)/V_{IN}(s)$ for the circuit shown
- b) Is the circuit stable?

$$T(s) = \frac{V_{OUT}}{V_{IN}} = \frac{s}{s^2 - s + 1}$$



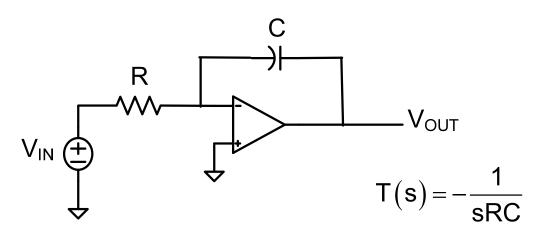
- a) Determine the transfer function $T(s)=V_{OUT}(s)/V_{IN}(s)$ for the circuit shown
- b) Is the circuit stable?

$$T(s) = \frac{V_{OUT}}{V_{IN}} = \frac{s}{s^2 - s + 1}$$



Since there is one RHP pole, the circuit is unstable !

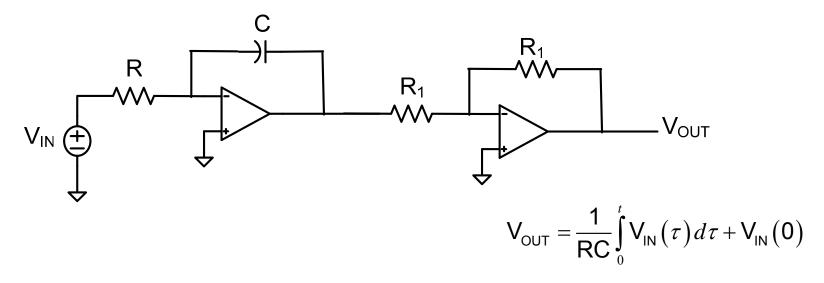
Inverting Integrator



$$T(j\omega) = -\frac{1}{j\omega RC}$$
$$|T(j\omega)| = \frac{1}{\omega RC}$$
$$\angle T(j\omega) = 90^{\circ}$$

Unity gain frequency is $\omega_0 = \frac{1}{RC}$

Noninverting Integrator



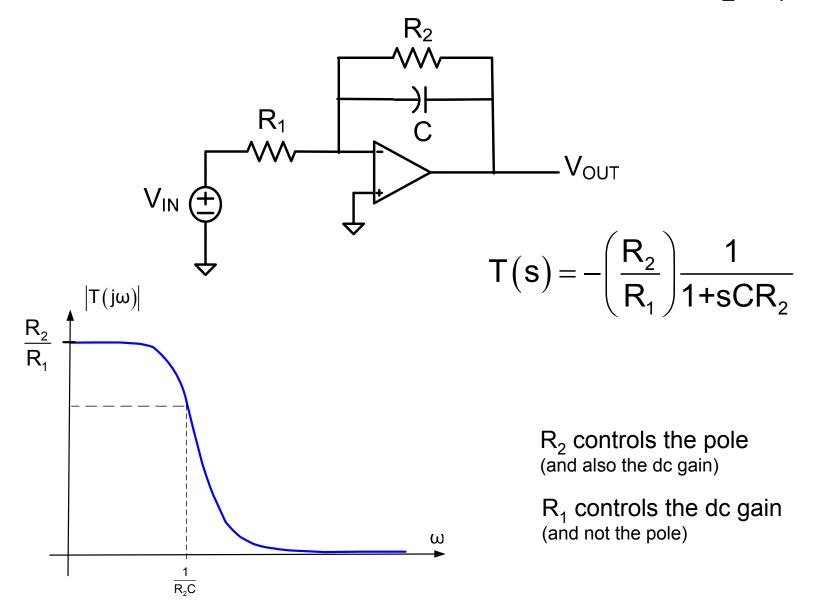
Obtained from inverting integrator by preceding or following with inverter

Requires more components

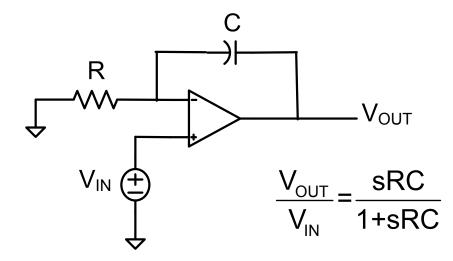
Also widely used

Same issues affect noninverting integrator

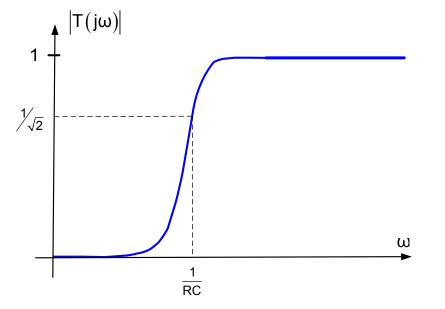
First-order lowpass filter with a dc gain of R_2/R_1



Review from Last Time First-Order Highpass Filter



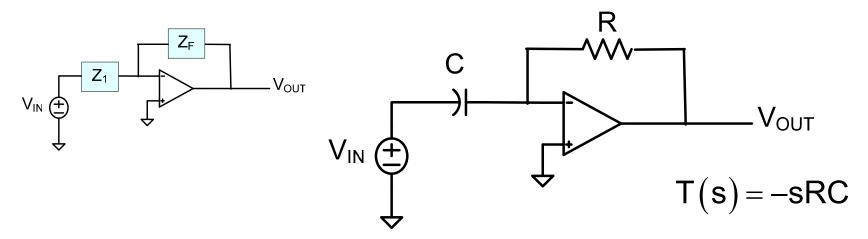
This is a first-order high-pass amplifier (or filter)



But this looks like a useful circuit!

3dB band edge at ω =1/(RC)

Inverting Differentiator



Differentiator gain ideally goes to ∞ at high frequencies

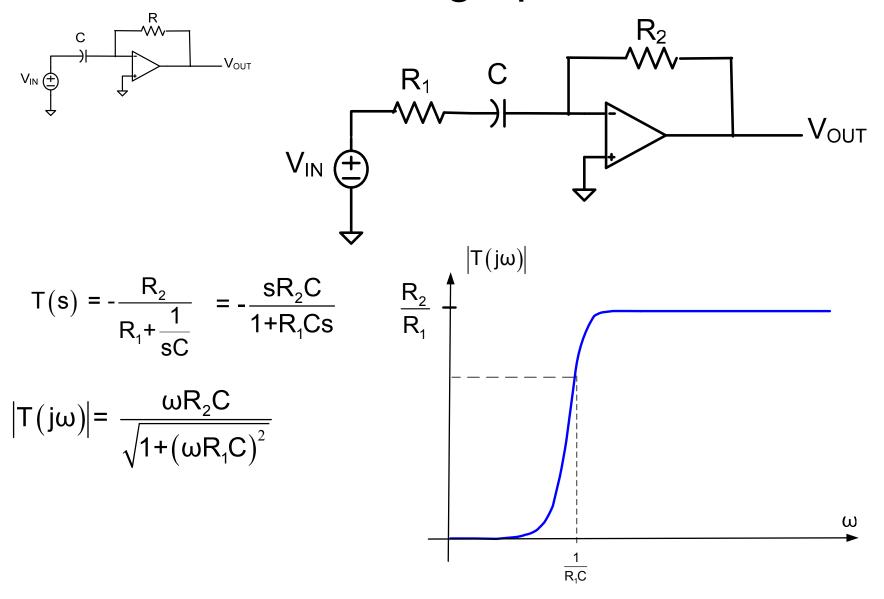
Differentiator not widely used

Differentiator relentlessly amplifies noise

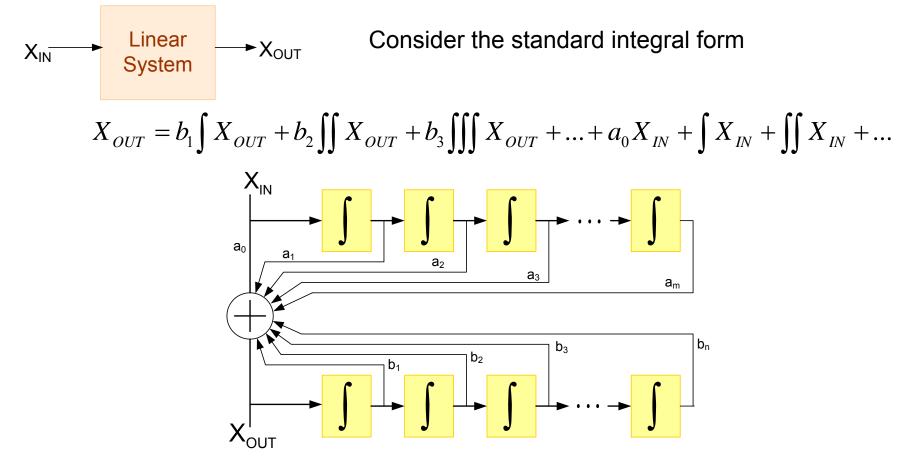
Stability problems with implementation (not discussed here)

Placing a resistor in series with C will result in a lossy differentiator that has some applications

First-order High-pass Filter

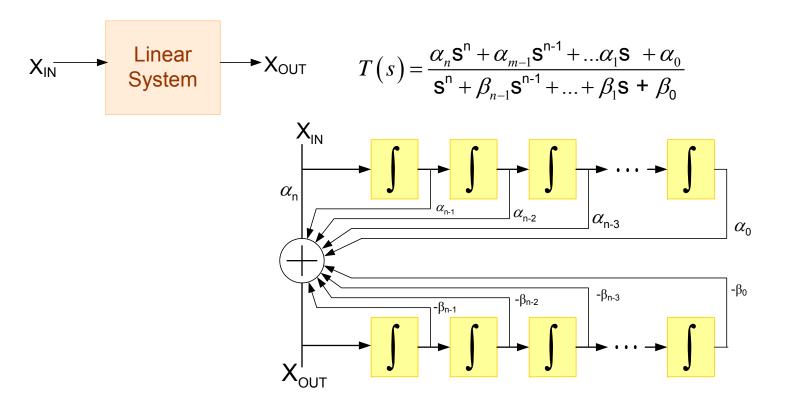


Applications of integrators to solving differential equations



This circuit is comprised of summers and integrators Can solve an arbitrary linear differential equation This concept was used in Analog Computers in the past

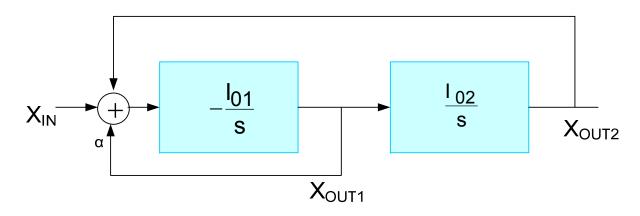
Applications of integrators to filter design



Can design (synthesize) any T(s) with just integrators and summers !

Integrators are not used "open loop" so loss is not added

Although this approach to filter design works, often more practical methods are used



This is a two-integrator-loop filter

$$X_{OUT1} = \left(-\frac{I_{01}}{s}\right) (X_{IN} + X_{OUT2} + \alpha X_{OUT1})$$
$$X_{OUT2} = \left(\frac{I_{02}}{s}\right) X_{OUT1}$$

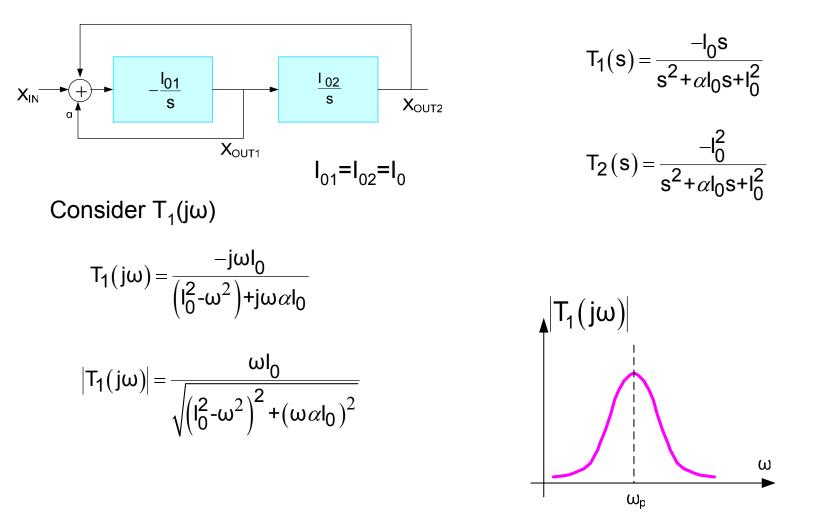
$$\frac{X_{OUT1}}{X_{IN}} = T_1(s) = \frac{-I_{01}s}{s^2 + \alpha I_{01}s + I_{01}I_{02}}$$

$$\frac{x_{0012}}{x_{1N}} = T_2(s) = \frac{x_{0102}}{s^2 + \alpha l_{01}s + l_{01}l_{02}}$$

These are 2-nd order filters

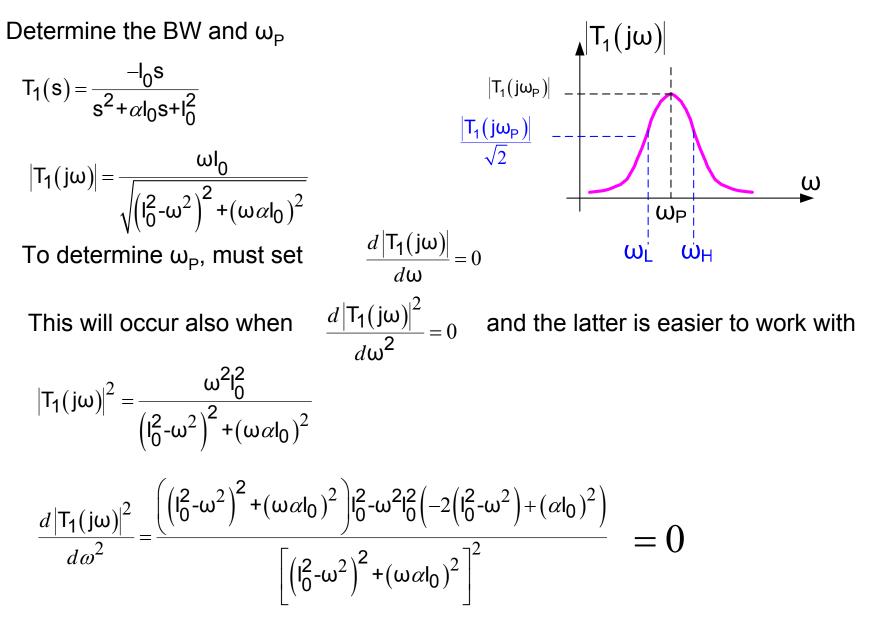
If $I_{01} = I_{02} = I_0$, these transfer functions reduce to

$$T_{1}(s) = \frac{-l_{0}s}{s^{2} + \alpha l_{0}s + l_{0}^{2}} \qquad T_{2}(s) = \frac{-l_{0}^{2}}{s^{2} + \alpha l_{0}s + l_{0}^{2}}$$



This is the standard 2nd order bandpass transfer function

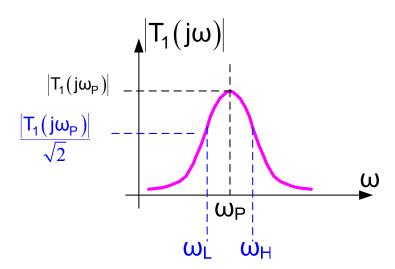
Now lets determine the BW and ω_{P}



The 2nd order Bandpass Filter

Determine the BW and ω_{P}

$$T_{1}(s) = \frac{-I_{0}s}{s^{2} + \alpha I_{0}s + I_{0}^{2}} \qquad |T_{1}(j\omega)| = \frac{\omega I_{0}}{\sqrt{\left(I_{0}^{2} - \omega^{2}\right)^{2} + \left(\omega \alpha I_{0}\right)^{2}}}$$
$$\frac{d|T_{1}(j\omega)|^{2}}{d\omega^{2}} = \frac{\left(\left(I_{0}^{2} - \omega^{2}\right)^{2} + \left(\omega \alpha I_{0}\right)^{2}\right)I_{0}^{2} - \omega^{2}I_{0}^{2}\left(-2\left(I_{0}^{2} - \omega^{2}\right) + \left(\alpha I_{0}\right)^{2}\right)}{\left[\left(I_{0}^{2} - \omega^{2}\right)^{2} + \left(\omega \alpha I_{0}\right)^{2}\right]^{2}} = 0$$



It suffices to set the numerator to 0

$$\left(\left(\mathsf{I}_{0}^{2} - \omega^{2} \right)^{2} + \left(\omega \alpha \mathsf{I}_{0} \right)^{2} \right) \mathsf{I}_{0}^{2} = \omega^{2} \mathsf{I}_{0}^{2} \left(-2 \left(\mathsf{I}_{0}^{2} - \omega^{2} \right) + \left(\alpha \mathsf{I}_{0} \right)^{2} \right)$$

Solving, we obtain

$$\omega_{P} = I_{0}$$

Substituting back into the magnitude expression, we obtain

$$|T_{1}(j\omega_{P})| = \frac{I_{0}I_{0}}{\sqrt{(I_{0}^{2} - I_{0}^{2}) + (I_{0}\alpha)^{2}}} = \frac{1}{\alpha}$$

Although the analysis is somewhat tedious, the results are clean

T(jω)

10

ŴΗ

ωi

ω

The 2nd order Bandpass Filter

Determine the BW and ω_{P}

 $T_{1}(s) = \frac{-l_{0}s}{s^{2} + \alpha l_{0}s + l_{0}^{2}} \qquad |T_{1}(j\omega)| = \frac{\omega l_{0}}{\sqrt{\left(l_{0}^{2} - \omega^{2}\right)^{2} + \left(\omega \alpha l_{0}\right)^{2}}} \qquad \qquad \frac{1}{\alpha} \qquad \qquad \frac{1}{\sqrt{2\alpha}}$ To obtain ω_{L} and ω_{H} , must solve $|T_{1}(j\omega)| = \frac{1}{\sqrt{2\alpha}}$

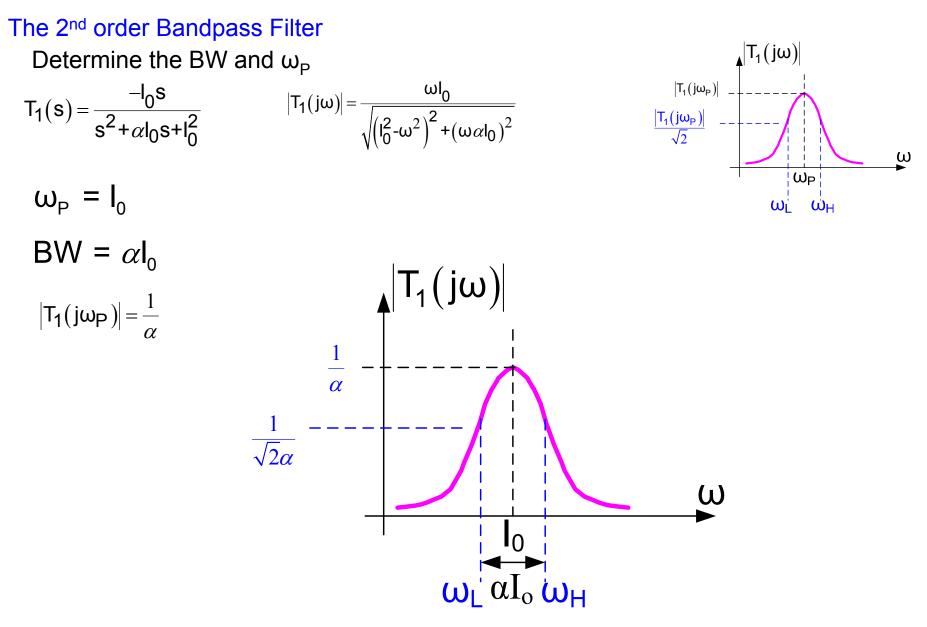
This becomes

$$\frac{1}{2\alpha^{2}} = \frac{\left(\left(l_{0}^{2}-\omega^{2}\right)^{2}+(\omega\alpha l_{0})^{2}\right)l_{0}^{2}-\omega^{2}l_{0}^{2}\left(-2\left(l_{0}^{2}-\omega^{2}\right)+(\alpha l_{0})^{2}\right)}{\left[\left(l_{0}^{2}-\omega^{2}\right)^{2}+(\omega\alpha l_{0})^{2}\right]^{2}}$$

The expressions for $\omega_{\rm H}$ and $\omega_{\rm H}$ can be easily obtained but are somewhat messy, but from these expressions, we obtain the simple expressions

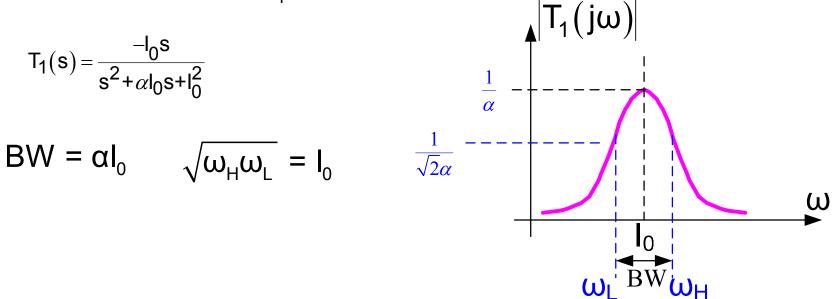
$$\mathsf{BW} = \omega_{\mathsf{H}} - \omega_{\mathsf{L}} = \alpha \mathsf{I}_{0}$$

$$\sqrt{\omega_{\rm H}\omega_{\rm L}} = I_0$$



The 2nd order Bandpass Filter

Determine the BW and ω_{P}



Often express the standard 2nd order bandpass transfer function as

$$T_1(s) = \frac{-I_0 s}{s^2 + BWs + I_0^2}$$

The 2nd order Bandpass Filter

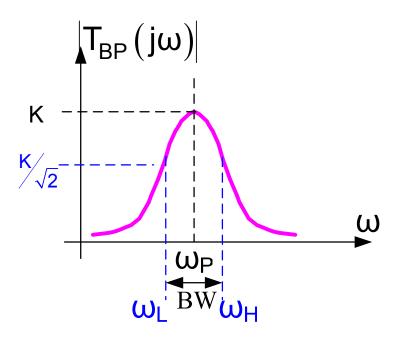
These results can be generalized

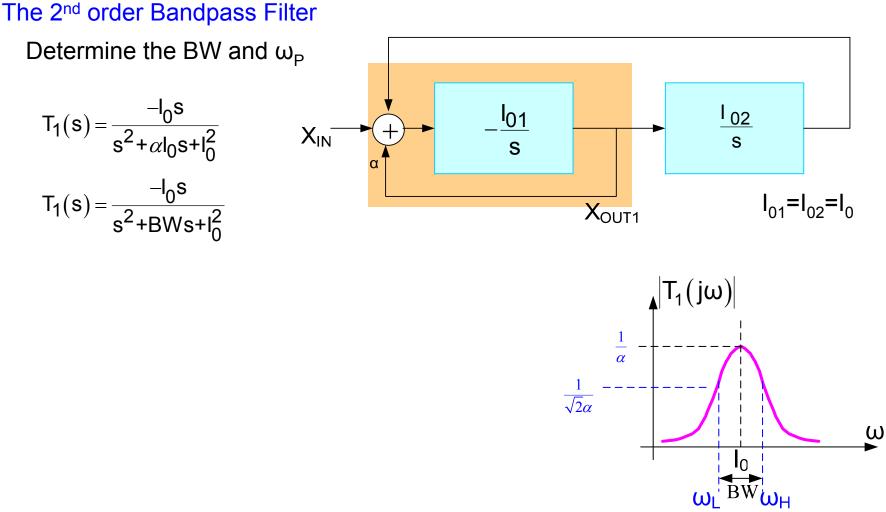
$$T_{BP}(s) = \frac{Hs}{s^2 + as + b}$$

BW = a

$$\omega_{\rm P} = \sqrt{b}$$

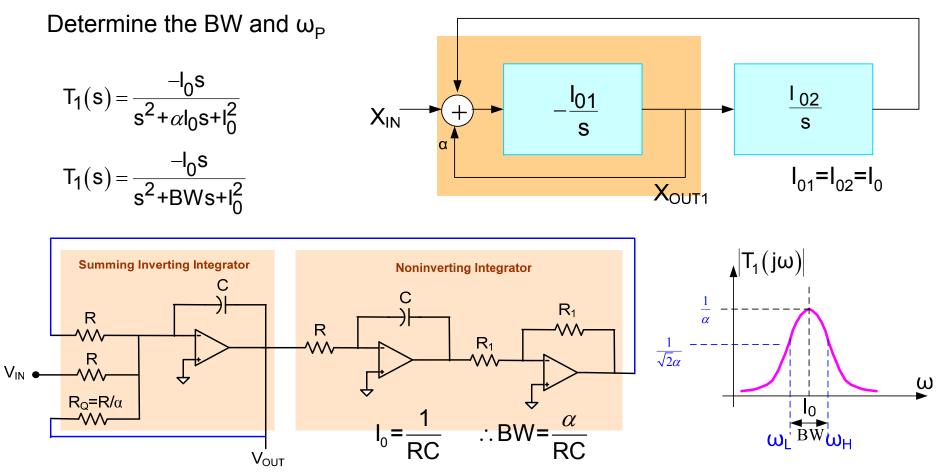
K= $\frac{|H|}{a}$





Can readily be implemented with a summing inverting integrator and a noninverting integrator

The 2nd order Bandpass Filter



 ω_{P}

BW = αI_{0}

- Widely used 2nd order Bandpass Filter
- BW can be adjusted with R_Q
- Peak gain changes with R_Q
- Note no loss is added to the integrators

The 2nd order Bandpass Filter

Summing Inverting Integrator

Design Strategy

R

R

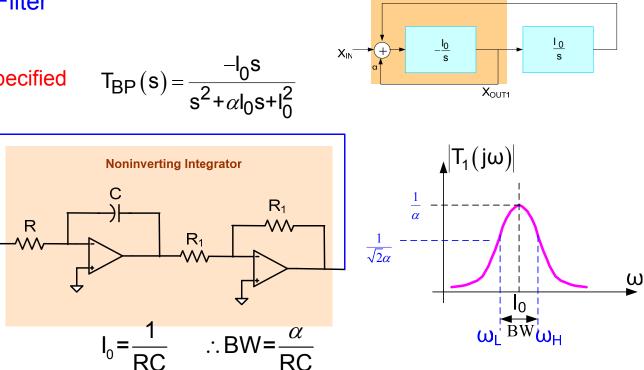
 $R_Q = R/\alpha$

VIN (

Assume BW and ω_{P} are specified

С

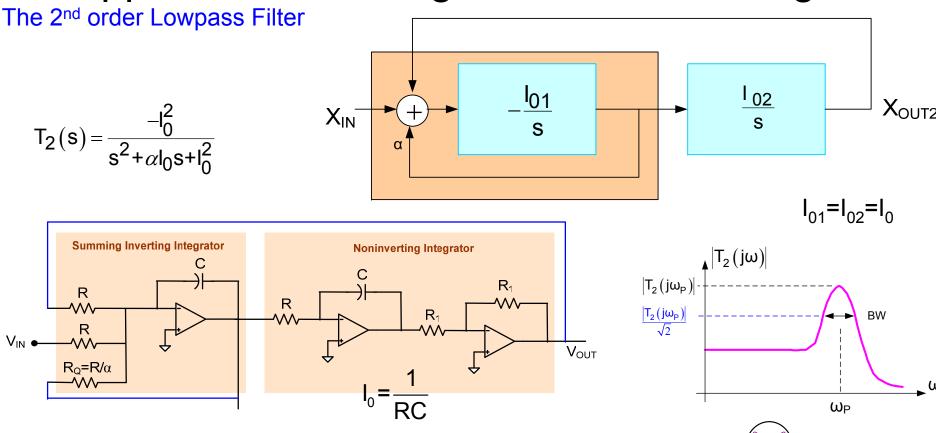
Vout



 ω_{P}

- 1. Pick C (use some practical or convenient value)
- $\omega_{P} = \frac{1}{RC}$ to obtain R 2. Solve expression 3. Solve expression BW= $\frac{\alpha}{RC}$ to obtain α and thus R_{α}

 $I_0 = \frac{1}{RC}$

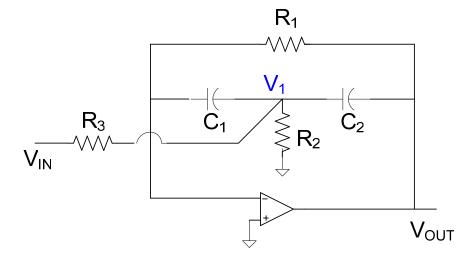


Exact expressions for BW and ω_{P} are very complicated but $\omega_{P} \approx I_{0}$

- Widely used 2nd order Lowpass Filter
- BW can be adjusted with R_Q but expression not so simple
- Peak gain changes with R_Q
- Note no loss is added to the integrators

Design procedure to realize a given 2nd order lowpass function is straightforward

Another 2nd-order Bandpass Filter



$$V_1(sC_1+sC_2+G_2+G_3) = V_{OUT}sC_2+V_{IN}G_3$$

 $V_1sC_1+V_{OUT}G_1 = 0$

$$T(s) = -\frac{\frac{s}{R_{3}C_{2}}}{s^{2}+s\left(\frac{1}{R_{1}C_{1}}+\frac{1}{R_{1}C_{2}}\right)+\frac{1}{(R_{2}//R_{3})R_{1}C_{1}C_{2}}}$$

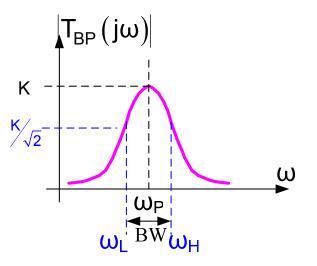
If the capacitors are matched and equal to C

$$\Gamma(s) = -\frac{\overline{R_{3}C}}{s^{2} + s\left(\frac{2}{R_{1}C}\right) + \frac{1}{(R_{2}/R_{3})R_{1}C^{2}}}$$

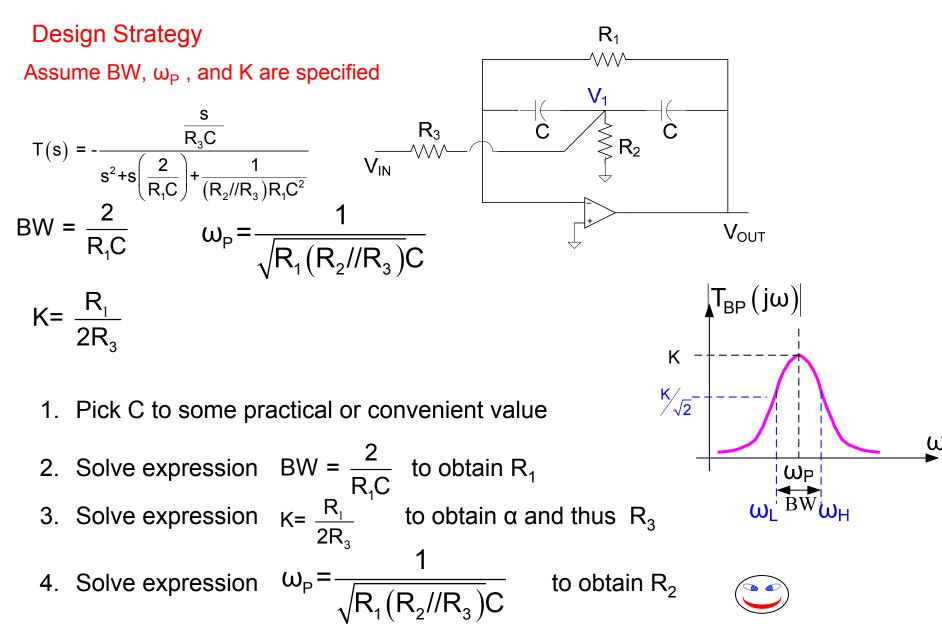
Since this is of the general form of a 2nd order BP transfer function, obtain

$$\omega_{\rm P} = \frac{1}{\sqrt{R_1(R_2/R_3)C}}$$

BW = $\frac{2}{R_1C}$ K= $\frac{R_1}{2R_3}$

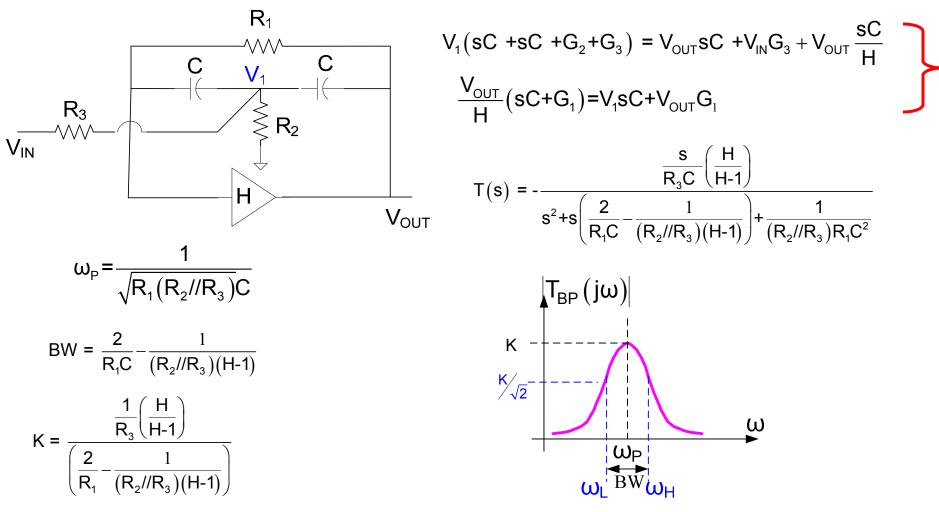


Another 2nd-order Bandpass Filter



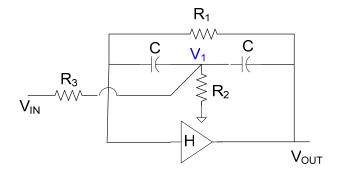
Another 2nd-order Bandpass Filter

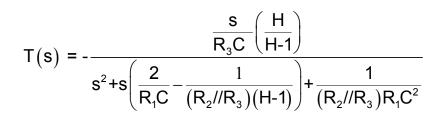
Termed the "STAR" biquad by inventors at Bell Labs



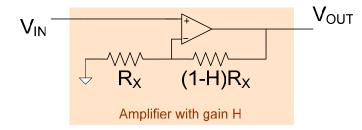
For the appropriate selection of component values, this is one of the best 2nd order bandpass filters that has been published

STAR 2nd-order Bandpass Filter

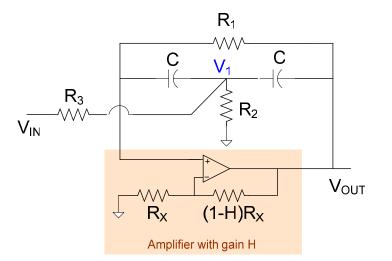




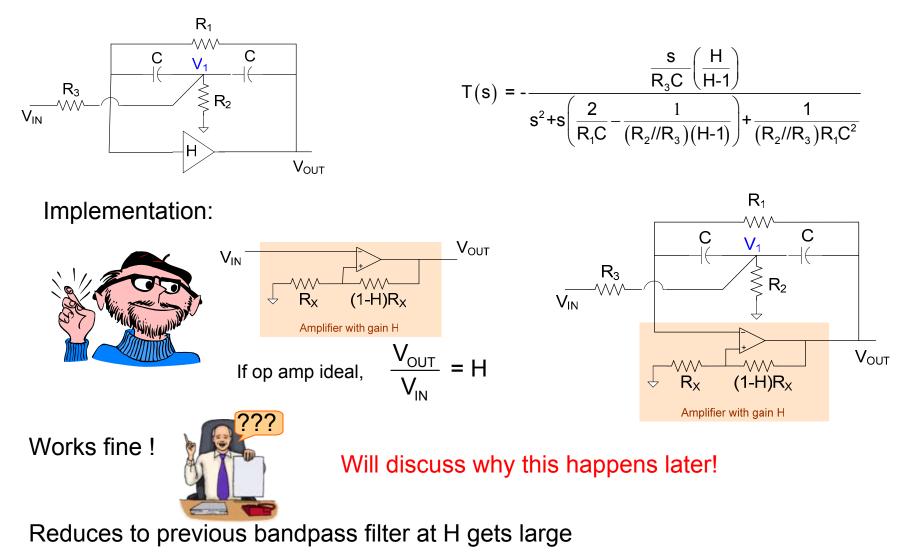
Implementation:



But the filter doesn't work !



STAR 2nd-order Bandpass Filter



Note that the "H" amplifier has feedback to positive terminal

End of Lecture 14